
Modular Monoliths with Rails Engines

by Anton / @antulik

RORO Melbourne, Nov 2023

What is a Rails Engine?

https://guides.rubyonrails.org/engi

nes.html

RORO Melbourne, Nov 2023

https://guides.rubyonrails.org/engines.html
https://guides.rubyonrails.org/engines.html

RORO Melbourne, Nov 2023

Getting started with engines in 1 minute

apps/zom_app/lib/engine.rb
module ZomApp
 class Engine < Rails::Engine
 end
end

config/application.rb
Load engines
Dir["apps/*/lib/engine.rb"].each do |path|
 require_relative "../" + path
end

RORO Melbourne, Nov 2023

Reference:

All you need is Rails (Engines): Compartmentalising your Monolith

by Julián Pinzón Eslava

https://www.youtube.com/watch?v=StDoHXO8H6E

https://github.com/pinzonjulian/all_you_need_is_rails_engines

RORO Melbourne, Nov 2023

https://www.youtube.com/watch?v=StDoHXO8H6E
https://github.com/pinzonjulian/all_you_need_is_rails_engines

My new Rails structure

aka Modular Monolith, aka Lean Engines

empty /app

/apps folder

core engine

single routes.rb file

single db migration list

specs are separate per engine

RORO Melbourne, Nov 2023

Why
separate?

Domain Driven
Design and
Bounded
Context

https://martinfowl
er.com/bliki/Bound

edContext.html

RORO Melbourne, Nov 2023

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html

Why
separate?

High

cohesion

Loose
coupling

RORO Melbourne, Nov 2023

Why separate?

lower cognitive load

clear responsibility for dev teams

factories are simple and efficient

testing is easier
clear what you should be stubbing in tests

RORO Melbourne, Nov 2023

Why separate?

My experience

Engine folder structure forced me to think about code depencies upfront and come up with
a better system design.

RORO Melbourne, Nov 2023

My Development Principle: Optimise for Change

There is always a trade-off

RORO Melbourne, Nov 2023

Optimise for Change 1

Engines don't use single namespace (controversial)

this:
class ZomUser

not this:
class Zom::User

aka Shopify approach

easy transition from Rails Monolith

follows Rails naming convention

has_one :zom_user just works

clear code context, no more multiple User models or user variables.
RORO Melbourne, Nov 2023

Optimise for Change 2

Use name prefixes

ZomUser , zom_user and TriUser , tri_user

consistency across relationships, local variables, param names

RORO Melbourne, Nov 2023

Optimise for Change 3

No module nesting (aka flat class definitions)

this:
module A::B
 p Module.nesting # [A::B]
end

not this:
module A
 module C
 p Module.nesting # [A::C, A]
 end
end

RORO Melbourne, Nov 2023

Lessons

RORO Melbourne, Nov 2023

Lesson 1: No ruby code in app folder

Engine separtion leads to better system and code design

RORO Melbourne, Nov 2023

Lesson 2: You will get it wrong. Design for change.

RORO Melbourne, Nov 2023

Lesson 3: Lean Engines are very easy to get started
and transition to.

RORO Melbourne, Nov 2023

Lesson 4: Mountable engines are harder to change if
you got boundary wrong.

RORO Melbourne, Nov 2023

Avoid mountable engines for Rails app (unless you know what
you're doing)

Mountable engine feature improves code isolation and reduces code conflicts across
engines. However it's harder to work with if system design is still evolving.

module Blorgh
 class Engine < ::Rails::Engine
 isolate_namespace Blorgh # <== avoid mountable engine
 end
end

Note: mountable engines are better suited for gems.

RORO Melbourne, Nov 2023

Lesson 5: All Rails apps larger than "tiny" will benefit
from Lean Engines.

RORO Melbourne, Nov 2023

Lesson 6: Not everything works out of the box and
some config is required.

e.g. assets, gems, specs, previews

RORO Melbourne, Nov 2023

Lesson 7: Better architecture is not free, and there is
additional but small effort required.

RORO Melbourne, Nov 2023

Lesson 8: OMG coding is fun again

RORO Melbourne, Nov 2023

Yet to answer: cross boundary logic

Needs a clear convention for where to place logic which integrates two engines.

E.g. who owns UserPostsController ? ProfileApp or PostApp engine?

RORO Melbourne, Nov 2023

Future discussion: packwerk

RORO Melbourne, Nov 2023

RORO Melbourne, Nov 2023

Reference

Slides done with https://marpit.marp.app/

Cohesion image is from https://github.com/Shopify/packwerk/blob/main/USAGE.md

Architecture spectrum image is from https://www.youtube.com/watch?

v=StDoHXO8H6E

RORO Melbourne, Nov 2023

https://marpit.marp.app/
https://github.com/Shopify/packwerk/blob/main/USAGE.md
https://www.youtube.com/watch?v=StDoHXO8H6E
https://www.youtube.com/watch?v=StDoHXO8H6E

Thank you

RORO Melbourne, Nov 2023

Discussion. What's your experience?

e.g.

Your experience with Rails Engines

Nested modules vs flat structure

Dealing with multiple User models

Domain Driver Design and bounded context

Dealing with application and code complexity

Your experience with packwerk

RORO Melbourne, Nov 2023

