Modular Monoliths with Rails Engines

by Anton /| @antulik

RORO Melbourne, Nov 2023

rubyonrails.org: Blog | Guides | API | Forum | Contribute on GitHub

mlLs GUI DES Home Guides Index & Contribute

Getting Started with Engines

In this guide you will learn about engines and how they can be used to provide additional
functionality to their host applications through a clean and very easy-to-use interface.

What is a Rails Engine?

« What makes an engine.

m Chapters

. What are Engines?

-

n

. Generating an Engine

s Inside an Engine

3. Providing Engine Functionality.
) s Generating an Article Resource
« How to generate an engine.
. . . s Generating a Comments
. 3 - Resource
o https://guides.rubyonrails.org/engi Howto build feature fr the engine. _ B
4. Hooking Into an Application
« How to hook the engine into an application. s Mounting the Engine
n e S o ht I I I I & How to override engine functionality in the application. » Engine Setup
s Using a Class Provided by the
« How to avoid loading Rails frameworks with Load and Configuration Hooks. Application

Configuring_an Engine

o

Testing an Engine

s Functional Tests
1 What are Engines?

Engines can be considered miniature applications that provide functionality to their host applications.
A Rails application is actually just a "supercharged" engine, with the Rails::Application class
inheriting a lot of its behavior from Rails::Engine.

(=2

. Improving Engine Functionality

s Overriding Models and
Controllers

Autoloading and Engines

Overriding Views

Therefore, engines and applications can be thought of as almost the same thing, just with subtle Routes

RORO Melbourne, Nov 2023

https://guides.rubyonrails.org/engines.html
https://guides.rubyonrails.org/engines.html

The architecture spectrum

Default Lean Lean Rails Microservices
Rails Engines Engines engines
architecture + Packwerk (local or
published)

RORO Melbourne, Nov 2023

Getting started with engines in 1 minute

apps/zom_app/lib/engine.rb
module ZomApp
class Engine < Rails::Engine
end
end

config/application.rb

Load engines

Dir["apps/*/lib/engine.rb"].each do |path]|
require_relative "../" + path

end

RORO Melbourne, Nov 2023

Reference:

All you need is Rails (Engines): Compartmentalising your Monolith

by Julian Pinzén Eslava

e https://www.youtube.com/watch?v=StDoHXO8HGE

e https://github.com/pinzonjulian/all_you_need_is_rails_engines

RORO Melbourne, Nov 2023

https://www.youtube.com/watch?v=StDoHXO8H6E
https://github.com/pinzonjulian/all_you_need_is_rails_engines

My new Rails structure

e aka Modular Monolith, aka Lean Engines
e empty /app

e /apps folder

e core engine

e single routes.rb file

single db migration list

e Specs are separate per engine

RORO Melbourne, Nov 2023

Wh (- gy
y 4 ~ Sales Context ~ 'F

separate? e : Supportiarta
' |
Domain Driven - [Pipeline [-] i [Ficket
Design and \ : 1
Bounded ; 4[o][oal
Context b3 ; ..]
| \ [SalesPersnn] / ;‘
e https://martinfowl . ’ . :
er.com/bliki/Bound B . =R el [vrio] iy
edContext.html T

-
-
- o o= -

RORO Melbourne, Nov 2023

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html

package 2

package 1

Why

separate?

a) Good

package 2
-
I
I
I 2

I
I
I
I
I
I
I
{ I
\ \ |
\ | \ I
\ | \ |
\ 1 \ I
\ | \
\ \ |
\ I \ |
V! v
vi! v
! v
Wl v
1 v
| \|
———M] —_—— 1
A
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
’ \ ,
\
@ \
[=)] \ \
© L I E— el o M R
x | |
[T] | |
©
o I 1
| 1
I |
1
i
: 1
\ | \ “
\ | 1 \ |
\ _ \ I
M \ | / _
o / | \ |
7] \ | \ |
@ | | ¥ ol
£ I
\ VA
m A v
—F\\ v
= \ v
o \l \
= e e e I
(- '®))
O c
(7)) O =
c O w Q
O o S
L O 41 O
[) o

RORO Melbourne, Nov 2023

Why separate?

e |lower cognitive load
o clear responsibility for dev teams
o factories are simple and efficient

o testing is easier
o clear what you should be stubbing in tests

RORO Melbourne, Nov 2023

Why separate?

My experience

Engine folder structure forced me to think about code depencies upfront and come up with
a better system design.

RORO Melbourne, Nov 2023

My Development Principle: Optimise for Change

There is always a trade-off

RORO Melbourne, Nov 2023

Optimise for Change 1

Engines don't use single namespace (controversial)

this:
class ZomUser

not this:
class Zom::User
e aka Shopify approach
e easy transition from Rails Monolith

e follows Rails naming convention

o has_one :zom_user justworks

e clear code context, no more multiple User models or user variables.
RORO Melbourne, Nov 2023

Optimise for Change 2

Use name prefixes

e ZomUser , zom _user and TriUser, tri_user

e consistency across relationships, local variables, param names

RORO Melbourne, Nov 2023

Optimise for Change 3

No module nesting (aka flat class definitions)

this:
module A::B

p Module.nesting # [A::B]
end

not this:
module A
module C
p Module.nesting # [A::C, Al
end
end

RORO Melbourne, Nov 2023

Lessons

RORO Melbourne, Nov 2023

Lesson 1: No ruby code in app folder

e Engine separtion leads to better system and code design

RORO Melbourne, Nov 2023

Lesson 2: You will get it wrong. Design for change.

RORO Melbourne, Nov 2023

Lesson 3: Lean Engines are very easy to get started
and transition to.

RORO Melbourne, Nov 2023

Lesson 4: Mountable engines are harder to change if
you got boundary wrong.

RORO Melbourne, Nov 2023

Avoid mountable engines for Rails app (unless you know what
you're doing)

Mountable engine feature improves code isolation and reduces code conflicts across
engines. However it's harder to work with if system design is still evolving.

module Blorgh
class Engine < ::Rails::Engine
isolate_namespace Blorgh # <== avoid mountable engine
end
end

Note: mountable engines are better suited for gems.

RORO Melbourne, Nov 2023

Lesson 5: All Rails apps larger than "tiny" will benefit
from Lean Engines.

RORO Melbourne, Nov 2023

Lesson 6: Not everything works out of the box and
some config is required.

e e.g.assets, gems, specs, previews

RORO Melbourne, Nov 2023

Lesson 7: Better architecture is not free, and there is
additional but small effort required.

RORO Melbourne, Nov 2023

Lesson 8: OMG coding is fun again

RORO Melbourne, Nov 2023

Yet to answer: cross boundary logic

e Needs a clear convention for where to place logic which integrates two engines.

e E.g.whoowns UserPostsController ? ProfileApp or PostApp engine?

RORO Melbourne, Nov 2023

Future discussion: packwerk

RORO Melbourne, Nov 2023

The architecture spectrum

Default Lean Lean Rails Microservices
Rails Engines Engines engines
architecture + Packwerk (local or
published)

RORO Melbourne, Nov 2023

Reference

e Slides done with https://marpit.marp.app/
e Cohesionimage is from https://github.com/Shopify/packwerk/blob/main/lUSAGE.md

o Architecture spectrum image is from https://www.youtube.com/watch?
v=StDoHXO8HGE

RORO Melbourne, Nov 2023

https://marpit.marp.app/
https://github.com/Shopify/packwerk/blob/main/USAGE.md
https://www.youtube.com/watch?v=StDoHXO8H6E
https://www.youtube.com/watch?v=StDoHXO8H6E

Thank you

RORO Melbourne, Nov 2023

Discussion. What's your experience?

e.g.

o Your experience with Rails Engines

Nested modules vs flat structure

Dealing with multiple User models

e Domain Driver Design and bounded context

Dealing with application and code complexity

e Your experience with packwerk

RORO Melbourne, Nov 2023

