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Getting Started with Engines

In this guide you will learn about engines and how they can be used to provide additional
functionality to their host applications through a clean and very easy-to-use interface.

What is a Rails Engine?
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1 What are Engines?

Engines can be considered miniature applications that provide functionality to their host applications.
A Rails application is actually just a "supercharged" engine, with the Rails::Application class
inheriting a lot of its behavior from Rails::Engine.
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. Improving Engine Functionality

s Overriding Models and
Controllers

Autoloading and Engines

Overriding Views

Therefore, engines and applications can be thought of as almost the same thing, just with subtle Routes
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The architecture spectrum

Default Lean Lean Rails Microservices
Rails Engines Engines engines
architecture + Packwerk (local or
published)
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Getting started with engines in 1 minute

# apps/zom_app/lib/engine.rb
module ZomApp
class Engine < Rails::Engine
end
end

# config/application.rb

# Load engines

Dir["apps/*/lib/engine.rb"].each do |path]|
require_relative "../" + path

end
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Reference:

All you need is Rails (Engines): Compartmentalising your Monolith

by Julian Pinzén Eslava

e https://www.youtube.com/watch?v=StDoHXO8HGE

e https://github.com/pinzonjulian/all_you_need_is_rails_engines
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My new Rails structure

e aka Modular Monolith, aka Lean Engines
e empty /app

e /apps folder

e core engine

e single routes.rb file

single db migration list

e Specs are separate per engine
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Why separate?

e |lower cognitive load
o clear responsibility for dev teams
o factories are simple and efficient

o testing is easier
o clear what you should be stubbing in tests
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Why separate?

My experience

Engine folder structure forced me to think about code depencies upfront and come up with
a better system design.
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My Development Principle: Optimise for Change

There is always a trade-off
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Optimise for Change 1

Engines don't use single namespace (controversial)

# this:
class ZomUser

# not this:
class Zom::User
e aka Shopify approach
e easy transition from Rails Monolith

e follows Rails naming convention

o has_one :zom_user justworks

e clear code context, no more multiple User models or user variables.
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Optimise for Change 2

Use name prefixes

e ZomUser , zom _user and TriUser, tri_user

e consistency across relationships, local variables, param names
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Optimise for Change 3

No module nesting (aka flat class definitions)

# this:
module A::B

p Module.nesting # [A::B]
end

# not this:
module A
module C
p Module.nesting # [A::C, Al
end
end
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Lessons
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Lesson 1: No ruby code in app folder

e Engine separtion leads to better system and code design
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Lesson 2: You will get it wrong. Design for change.
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Lesson 3: Lean Engines are very easy to get started
and transition to.
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Lesson 4: Mountable engines are harder to change if
you got boundary wrong.
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Avoid mountable engines for Rails app (unless you know what
you're doing)

Mountable engine feature improves code isolation and reduces code conflicts across
engines. However it's harder to work with if system design is still evolving.

module Blorgh
class Engine < ::Rails::Engine
isolate_namespace Blorgh # <== avoid mountable engine
end
end

Note: mountable engines are better suited for gems.
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Lesson 5: All Rails apps larger than "tiny" will benefit
from Lean Engines.
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Lesson 6: Not everything works out of the box and
some config is required.

e e.g.assets, gems, specs, previews
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Lesson 7: Better architecture is not free, and there is
additional but small effort required.
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Lesson 8: OMG coding is fun again
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Yet to answer: cross boundary logic

e Needs a clear convention for where to place logic which integrates two engines.

e E.g.whoowns UserPostsController ? ProfileApp or PostApp engine?
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Future discussion: packwerk
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The architecture spectrum

Default Lean Lean Rails Microservices
Rails Engines Engines engines
architecture + Packwerk (local or
published)
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Reference

e Slides done with https://marpit.marp.app/
e Cohesionimage is from https://github.com/Shopify/packwerk/blob/main/lUSAGE.md

o Architecture spectrum image is from https://www.youtube.com/watch?
v=StDoHXO8HGE
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Thank you
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Discussion. What's your experience?

e.g.

o Your experience with Rails Engines

Nested modules vs flat structure

Dealing with multiple User models

e Domain Driver Design and bounded context

Dealing with application and code complexity

e Your experience with packwerk
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